User Tools

Site Tools


Sidebar

* [[Start|Home]] * [[Possible Outlines]] * [[playground:Playground]] * [[Needs Review]] * [[sidebar|Edit The Sidebar]]

theorem:the_composition_of_permutations_is_a_permutation

This is an old revision of the document!


The Composition Of Permutations Is A Permutation

Theorem

Let $X$ be a set. Suppose that $\sigma_1, \sigma_2, \ldots,\sigma_k$ are all permutations of $X$. Then the composition $\sigma_1\circ \sigma_2\circ \ldots\circ \sigma_k$ is a permutation of $X$.


Remarks

  • Put them in a bulleted list.

$\LaTeX$ version

theorem.the_composition_of_permutations_is_a_permutation.tex
%%%%%
% DEPENDENCIES 
% RequiredMacros: \DeclareMathOperator{\syl}{Syl} 
%%%%%
\begin{theorem}
Let $X$ be a set. Suppose that $\sigma_1, \sigma_2, \ldots,\sigma_k$ are all [[Definition.Permutation|permutations]] of $X$.  Then the composition 
$\sigma_1\circ \sigma_2\circ \ldots\circ \sigma_k$
is a permutation of $X$.
\end{theorem}

  • Give links to external sources.

theorem

theorem/the_composition_of_permutations_is_a_permutation.1385045829.txt.gz · Last modified: 2013/11/21 09:57 by tarafife