* [[Start|Home]] * [[Possible Outlines]] * [[playground:Playground]] * [[Needs Review]] * [[sidebar|Edit The Sidebar]]
* [[Start|Home]] * [[Possible Outlines]] * [[playground:Playground]] * [[Needs Review]] * [[sidebar|Edit The Sidebar]]
This is an old revision of the document!
Let $G$ be a finite group and $p$ a prime. Write $|G| = np^k$ with $(n,p) = 1$. Then
%%%%%%%%%% % DEPENDENCIES % -Macros: \DeclareMathOperator{\syl}{Syl} %%%%%%%%%% Let $G$ be a finite group and $p$ a prime. Write $|G| = np^k$ with $(n,p) = 1$. Then \begin{enumerate} \item $G$ acts transitively on $\syl_p(G)$ by conjugation with $|\syl_p(G)| \equiv 1$ modulo $p$, and \item every $P \in \syl_p(G)$ has order $p^k$. \end{enumerate}