User Tools

Site Tools


Sidebar

* [[Start|Home]] * [[Possible Outlines]] * [[playground:Playground]] * [[Needs Review]] * [[sidebar|Edit The Sidebar]]

problem:simple_matrix_encryption

This is an old revision of the document!


Simple Matrix Encryption

Problem

Consider the matrix $A = \begin{bmatrix} 2&1&-1
5&2&-3
0&2&1\end{bmatrix}$. Joe decides to send a message to Sam by encrypting the message with the matrix $A$. He first takes his message and converts it to numbers by replacing A with 1, B with 2, C with 3, and so on till replacing Z with 26. He uses a 0 for spaces. After replacing the letters with numbers, he breaks the message up into chunks of 3 letters. He then multiplies each chunk of 3 by the matrix $A$, resulting in a coded message. For example, to send the message “good job ben” he firsts converts the letters to the numbers and places them in a large matrix $M$ (top to bottom, left to right) $$ \left[ \begin{bmatrix}g\\o\\o\end{bmatrix}, \begin{bmatrix}d
\
j\end{bmatrix},\begin{bmatrix}o\\b\
\end{bmatrix},\begin{bmatrix}b\\e\\n\end{bmatrix}\right] \rightarrow \left[\begin{bmatrix}7\\15\\15\end{bmatrix}, \begin{bmatrix}4\\0\\10\end{bmatrix},\begin{bmatrix}15\\2\\0\end{bmatrix},\begin{bmatrix}2\\5\\14\end{bmatrix}\right] = M= \begin{bmatrix} 7 & 4 & 15 & 2
15 & 0 & 2 & 5
15 & 10 & 0 & 14 \end{bmatrix} .$$ To encode the matrix, he computes $$AM = \begin{bmatrix} 14 & -2 & 32 & -5
20 & -10 & 79 & -22
45 & 10 & 4 & 24 \end{bmatrix}.$$ and then sends the numbers $[ [ 14, 20, 45], [ -2, -10, 10], [ 32, 79, 4], [ -5, -22, 24]] $ to Sam. Sam uses the inverse of $A$ to decode the message.

  1. Find the inverse of $A$.
  2. Use $A^{-1}$ to decode $14, 20, 45],[ -2, -10, 10],[ 32, 79, 4],[ -5, -22, 24$ and show the message is “good job ben.”

Remarks

  • Make remarks with a list.

$\LaTeX$ version

problem.simple_matrix_encryption.tex
%%%%%
% DEPENDENCIES
% RequiredPackages: \usepackage{tikz}
% RequiredMacros: \DeclareMathOperator{\aut}{Aut} 
%%%%%
%Encryption using matrices (and inverses to decode things).
\begin{problem}
Consider the matrix 
$A =
\begin{bmatrix}
 2&1&-1\\
 5&2&-3\\
 0&2&1
\end{bmatrix}
$.  
Joe decides to send a message to Sam by encrypting the message with the matrix $A$. He first takes his message and converts it to numbers by replacing A with 1, B with 2, C with 3, and so on till replacing Z with 26.  He uses a 0 for spaces.  After replacing the letters with numbers, he breaks the message up into chunks of 3 letters.  He then multiplies each chunk of 3 by the matrix $A$, resulting in a coded message. For example, to send the message ``good job ben'' he firsts converts the letters to the numbers and places them in a large matrix $M$ (top to bottom, left to right) 
$$
\left[
\begin{bmatrix}g\\o\\o\end{bmatrix}, \begin{bmatrix}d\\ \ \\ j\end{bmatrix},\begin{bmatrix}o\\b\\\  \end{bmatrix},\begin{bmatrix}b\\e\\n\end{bmatrix}\right] 
\rightarrow
\left[\begin{bmatrix}7\\15\\15\end{bmatrix}, \begin{bmatrix}4\\0\\10\end{bmatrix},\begin{bmatrix}15\\2\\0\end{bmatrix},\begin{bmatrix}2\\5\\14\end{bmatrix}\right] 
= M=
\begin{bmatrix}
7 & 4 & 15 & 2 \\
15 & 0 & 2 & 5 \\
15 & 10 & 0 & 14  
\end{bmatrix}
.$$
To encode the matrix, he computes 
$$AM = 
\begin{bmatrix}
14 & -2 & 32 & -5 \\
20 & -10 & 79 & -22 \\
45 & 10 & 4 & 24
\end{bmatrix}.$$
and then sends the numbers 
$[
[ 14,  20,  45],
[ -2, -10,  10],
[ 32,  79,   4],
[ -5, -22,  24]]
$ to Sam. Sam uses the inverse of $A$ to decode the message. 
\begin{enumerate}
 \item Find the inverse of $A$. 
 \item Use $A^{-1}$ to decode $[
[ 14,  20,  45],
[ -2, -10,  10],
[ 32,  79,   4],
[ -5, -22,  24]]$ and show the message is ``good job ben''.
 \item Decode the message $[[39, 89, 22],[20, 48,  4],[39, 88, 33]]$.
\end{enumerate}
 
 
\end{problem}

problem

problem/simple_matrix_encryption.1376688209.txt.gz · Last modified: 2013/08/16 17:23 by bmwoodruff