* [[Start|Home]] * [[Possible Outlines]] * [[playground:Playground]] * [[Needs Review]] * [[sidebar|Edit The Sidebar]]
* [[Start|Home]] * [[Possible Outlines]] * [[playground:Playground]] * [[Needs Review]] * [[sidebar|Edit The Sidebar]]
This is an old revision of the document!
Consider the matrix
$A =
\begin{bmatrix}
2&1&-1
5&2&-3
0&2&1
\end{bmatrix}
$.
Joe decides to send a message to Sam by encrypting the message with the matrix $A$. He first takes his message and converts it to numbers by replacing A with 1, B with 2, C with 3, and so on till replacing Z with 26. He uses a 0 for spaces. After replacing the letters with numbers, he breaks the message up into chunks of 3 letters. He then multiplies each chunk of 3 by the matrix $A$, resulting in a coded message. For example, to send the message “good job ben” he firsts converts the letters to the numbers and places them in a large matrix $M$ (top to bottom, left to right)
$$
\left[
\begin{bmatrix}g\\o\\o\end{bmatrix}, \begin{bmatrix}d
\
j\end{bmatrix},\begin{bmatrix}o\\b\
\end{bmatrix},\begin{bmatrix}b\\e\\n\end{bmatrix}\right]
\rightarrow
\left[\begin{bmatrix}7\\15\\15\end{bmatrix}, \begin{bmatrix}4\\0\\10\end{bmatrix},\begin{bmatrix}15\\2\\0\end{bmatrix},\begin{bmatrix}2\\5\\14\end{bmatrix}\right]
= M=
\begin{bmatrix}
7 & 4 & 15 & 2
15 & 0 & 2 & 5
15 & 10 & 0 & 14
\end{bmatrix}
.$$
To encode the matrix, he computes
$$AM =
\begin{bmatrix}
14 & -2 & 32 & -5
20 & -10 & 79 & -22
45 & 10 & 4 & 24
\end{bmatrix}.$$
and then sends the numbers
$[
[ 14, 20, 45],
[ -2, -10, 10],
[ 32, 79, 4],
[ -5, -22, 24]]
$ to Sam. Sam uses the inverse of $A$ to decode the message.
.
- Decode the message $39, 89, 22],[20, 48, 4],[39, 88, 33$.
—-
==== Remarks ====
* Make remarks with a list.
—-
==== $\LaTeX$ version ====
<file tex problem.simple_matrix_encryption.tex>
%
% DEPENDENCIES
% RequiredPackages: \usepackage{tikz}
% RequiredMacros: \DeclareMathOperator{\aut}{Aut}
%
%Encryption using matrices (and inverses to decode things).
\begin{problem}
Consider the matrix
$A =
\begin{bmatrix}
2&1&-1
5&2&-3
0&2&1
\end{bmatrix}
$.
Joe decides to send a message to Sam by encrypting the message with the matrix $A$. He first takes his message and converts it to numbers by replacing A with 1, B with 2, C with 3, and so on till replacing Z with 26. He uses a 0 for spaces. After replacing the letters with numbers, he breaks the message up into chunks of 3 letters. He then multiplies each chunk of 3 by the matrix $A$, resulting in a coded message. For example, to send the message ``good job ben
he firsts converts the letters to the numbers and places them in a large matrix $M$ (top to bottom, left to right)
$$
\left[
\begin{bmatrix}g\\o\\o\end{bmatrix}, \begin{bmatrix}d
\
j\end{bmatrix},\begin{bmatrix}o\\b\
\end{bmatrix},\begin{bmatrix}b\\e\\n\end{bmatrix}\right]
\rightarrow
\left[\begin{bmatrix}7\\15\\15\end{bmatrix}, \begin{bmatrix}4\\0\\10\end{bmatrix},\begin{bmatrix}15\\2\\0\end{bmatrix},\begin{bmatrix}2\\5\\14\end{bmatrix}\right]
= M=
\begin{bmatrix}
7 & 4 & 15 & 2
15 & 0 & 2 & 5
15 & 10 & 0 & 14
\end{bmatrix}
.$$
To encode the matrix, he computes
$$AM =
\begin{bmatrix}
14 & -2 & 32 & -5
20 & -10 & 79 & -22
45 & 10 & 4 & 24
\end{bmatrix}.$$
and then sends the numbers
$[
[ 14, 20, 45],
[ -2, -10, 10],
[ 32, 79, 4],
[ -5, -22, 24]]
$ to Sam. Sam uses the inverse of $A$ to decode the message.
\begin{enumerate}
\item Find the inverse of $A$.
\item Use $A^{-1}$ to decode $[
[ 14, 20, 45],
[ -2, -10, 10],
[ 32, 79, 4],
[ -5, -22, 24]]$ and show the message is ``good job ben''.
\item Decode the message $39, 89, 22],[20, 48, 4],[39, 88, 33$.
\end{enumerate}
\end{problem}
</file>
problem