* [[Start|Home]] * [[Possible Outlines]] * [[playground:Playground]] * [[Needs Review]] * [[sidebar|Edit The Sidebar]]
* [[Start|Home]] * [[Possible Outlines]] * [[playground:Playground]] * [[Needs Review]] * [[sidebar|Edit The Sidebar]]
Let be any set. The on , denoted , is the set of all permutations of . We denote by the symmetric group on .
%%%%% % DEPENDENCIES % RequiredMacros: \newcommand{\textdef}[1]{\textit{#1}} \DeclareMathOperator{\sym}{Sym} %%%%% \begin{definition} Let $X$ be any set. The \textdef{symmetric group} on $X$, denoted $\sym(X)$, is the set of all permutations of $X$. We denote by $S_n$ the symmetric group on $X = \{1,2,\ldots, n\}$. \end{definition}