User Tools

Site Tools


Sidebar

* [[Start|Home]] * [[Possible Outlines]] * [[playground:Playground]] * [[Needs Review]] * [[sidebar|Edit The Sidebar]]

definition:symmetric_group

This is an old revision of the document!


Symmetric Group

Definition

Let $X$ be any set. The $\textdef{symmetric group}$ on $X$, denoted $\sym(X)$, is the set of all permutations of $X$; that is, $\sym(X)$ is the set of all bijections from $X$ to $X$. We denote by $S_n$ the symmetric group on $X = \{1,2,\ldots, n\}$.


Remarks

  • None.

$\LaTeX$ version

definition.symmetric_group.tex
%%%%%
% DEPENDENCIES 
% RequiredMacros: \newcommand{\textdef}[1]{\textit{#1}}
%%%%%
\begin{definition}
Let $X$ be any set. The \textdef{symmetric group} on $X$, denoted $\sym(X)$, is the set of all permutations of $X$; that is, $\sym(X)$ is the set of all bijections from $X$ to $X$. We denote by $S_n$ the symmetric group on $X = \{1,2,\ldots, n\}$.
\end{definition}

definition needsreview rjosh

definition/symmetric_group.1376920804.txt.gz · Last modified: 2013/08/19 10:00 by joshuawiscons