* [[Start|Home]] * [[Possible Outlines]] * [[playground:Playground]] * [[Needs Review]] * [[sidebar|Edit The Sidebar]]
* [[Start|Home]] * [[Possible Outlines]] * [[playground:Playground]] * [[Needs Review]] * [[sidebar|Edit The Sidebar]]
This is an old revision of the document!
Let $X$ be any set. A $\textdef{permutation group}$ on $X$ is any subgroup of $\sym{X}$.
%%%%% % DEPENDENCIES % RequiredMacros: \newcommand{\textdef}[1]{\textit{#1}} \DeclareMathOperator{\sym}{Sym} %%%%% \begin{definition} Let $X$ be any set. A \textdef{permutation group} on $X$ is any subgroup of $\sym{X}$; that is, it is a subset of $\sym{X}$ that contains the identity and is closed under composition and taking inverses. \end{definition}
definition needsreview rben