* [[Start|Home]] * [[Possible Outlines]] * [[playground:Playground]] * [[Needs Review]] * [[sidebar|Edit The Sidebar]]
* [[Start|Home]] * [[Possible Outlines]] * [[playground:Playground]] * [[Needs Review]] * [[sidebar|Edit The Sidebar]]
Let $(G,\cdot)$ and $(H,\times)$ be groups. We say that the function $f:G\to H$ is a group $\textdef{homomorphism}$ if $f(a\cdot b)=f(a)\times f(b)$ for every $a,b\in G$.
%%%%%
% DEPENDENCIES
% RequiredMacros: \DeclareMathOperator{\syl}{Syl}
%%%%%
\begin{definition}
Type the definition using LaTeX syntax.
\end{definition}
definition ben needsreview rben rjosh