* [[Start|Home]] * [[Possible Outlines]] * [[playground:Playground]] * [[Needs Review]] * [[sidebar|Edit The Sidebar]]
* [[Start|Home]] * [[Possible Outlines]] * [[playground:Playground]] * [[Needs Review]] * [[sidebar|Edit The Sidebar]]
This is an old revision of the document!
Let $G$ be a Set together with a function $m:G\times G \rightarrow G$, a function $i:G \rightarrow G$, and a distinguished element $e\in G$. The structure $\mathbb{G} = (G,m,i,e)$ is called a $\textdef{group}$ if the following hold for all $x,y,z \in G$; we write $xy$ in place of $m(x,y)$ and $x^{-1}$ in place of $i(x)$.
We usually simply write $G$ when referring to the entire structure $\mathbb{G}$.
%%%%% % DEPENDENCIES % RequiredMacros: \newcommand{\textdef}[1]{\textit{#1}} %%%%% \begin{definition} Let $G$ be a set together with a function $m:G\times G \rightarrow G$, a function $i:G \rightarrow G$, and a distinguished element $e\in G$. The structure $\mathbb{G} = (G,m,i,e)$ is called a \textdef{group} if the following hold for all $x,y,z \in G$; we write $xy$ in place of $m(x,y)$ and $x^{-1}$ in place of $i(x)$. \begin{enumerate} \item $(xy)z = x(yz)$ \item $xx^{-1} = x^{-1}x = e$ \item $xe = ex = x$ \end{enumerate} We usually simply write $G$ when referring to the entire structure $\mathbb{G}$. \end{definition}
definition