User Tools

Site Tools


Sidebar

* [[Start|Home]] * [[Possible Outlines]] * [[playground:Playground]] * [[Needs Review]] * [[sidebar|Edit The Sidebar]]

definition:composition_combination_of_permutations

This is an old revision of the document!


Composition Combination Of Permutations

Definition

Let $X$ be a set, and $S$ be a set of permutations of $X$. *If $\sigma$ is a permutation of $X$, we'll use exponential notation to express repeated composition of $\sigma$. This gives us $\sigma^2=\sigma\circ \sigma$ and $\sigma^5=\sigma\circ\sigma\circ\sigma\circ\sigma\circ\sigma$, etc. *We'll use negative exponents when we want to repeated apply an inverse, which gives us $\sigma^{-n}=\left(\sigma^{-1}\right)^n$. * A composition combination of permutations in $S$ is a composition of the form $$\sigma_1^{n_1}\circ\sigma_2^{n_2}\circ\cdots\circ \sigma_k^{n_k},$$ where $k\in\mathbb{N}$, each $\sigma_i\in S$, and each $n_i\in \mathbb{Z}$ for $i\in \{1,2,3,\ldots,k\}$. * The span of $S$, written $\text{span}(S)$ is the set of all composition combinations of permutations in $S$. We'll say that the set $S$ generates $\text{span}(S)$. As an example, if $S=\{a,b,c,d\}$ is a set of permutations of $X$, then the composition $a^2\circ b^{-1}\circ c^3$ is a composition combination of permutations in $S$, and so are $d^{-3}$, $b^5\circ a^{-2}$, and more.


Remarks

  • Put them in a bulleted list.

$\LaTeX$ version

definition.composition_combination_of_permutations.tex
%%%%%
% DEPENDENCIES 
% RequiredMacros: \DeclareMathOperator{\syl}{Syl} 
%%%%%
\begin{definition}
Let $X$ be a set, and $S$ be a set of permutations of $X$.  
*If $\sigma$ is a permutation of $X$, we'll use exponential notation to express repeated composition of $\sigma$. This gives us $\sigma^2=\sigma\circ \sigma$ and $\sigma^5=\sigma\circ\sigma\circ\sigma\circ\sigma\circ\sigma$, etc. 
*We'll use negative exponents when we want to repeated apply an inverse, which gives us $\sigma^{-n}=\left(\sigma^{-1}\right)^n$.
* A composition combination of permutations in $S$ is a composition of the form $$\sigma_1^{n_1}\circ\sigma_2^{n_2}\circ\cdots\circ \sigma_k^{n_k},$$ where $k\in\mathbb{N}$, each $\sigma_i\in S$, and each $n_i\in \mathbb{Z}$ for $i\in \{1,2,3,\ldots,k\}$.
* The span of $S$, written $\text{span}(S)$ is the set of all composition combinations of permutations in $S$. We'll say that the set $S$ generates $\text{span}(S)$.
As an example, if $S=\{a,b,c,d\}$ is a set of permutations of $X$, then the composition $a^2\circ b^{-1}\circ c^3$ is a composition combination of permutations in $S$, and so are $d^{-3}$, $b^5\circ a^{-2}$, and more. 
\end{definition}

  • Give links to external sources.

definition

definition/composition_combination_of_permutations.1385050251.txt.gz · Last modified: 2013/11/21 11:10 by tarafife