Table of Contents

Kernel of a Group Homomorphism

Definition

Let $f:G\to H$ be a group homomorphism. The $\textdef{kernel}$ of $f$ is the collection of elements of $G$ that map to the indentity $e_H$ element of $H$. In set notation, we write $$\ker f = \{ g\in G\mid f(g)=e_H\}.$$


Remarks


$\LaTeX$ version

%%%%%
% DEPENDENCIES 
% RequiredMacros: \DeclareMathOperator{\syl}{Syl} 
%%%%%
\begin{definition}
Type the definition using LaTeX syntax.
\end{definition}

definition ben needsreview rben