Let $f:G\to H$ be a group homomorphism. The $\textdef{kernel}$ of $f$ is the collection of elements of $G$ that map to the indentity $e_H$ element of $H$. In set notation, we write $$\ker f = \{ g\in G\mid f(g)=e_H\}.$$
%%%%% % DEPENDENCIES % RequiredMacros: \DeclareMathOperator{\syl}{Syl} %%%%% \begin{definition} Type the definition using LaTeX syntax. \end{definition}
definition ben needsreview rben