Table of Contents

Group Homomorphism

Definition

Let $(G,\cdot)$ and $(H,\times)$ be groups. We say that the function $f:G\to H$ is a group $\textdef{homomorphism}$ if $f(a\cdot b)=f(a)\times f(b)$ for every $a,b\in G$.


Remarks


$\LaTeX$ version

%%%%%
% DEPENDENCIES 
% RequiredMacros: \DeclareMathOperator{\syl}{Syl} 
%%%%%
\begin{definition}
Type the definition using LaTeX syntax.
\end{definition}

definition ben needsreview rben rjosh