====== Sylow's theorem ====== $\DeclareMathOperator{\syl}{Syl}$ **Theorem.** Let $G$ be a finite [[Definition:Group|group]] and $p$ a prime. Write $|G| = np^k$ with $(n,p) = 1$. Then - $G$ acts [[Definition:Transitive Group Action|transitively]] on $\syl_p(G)$ by [[Definition:Conjugation|conjugation]] with $|\syl_p(G)| \equiv 1$ modulo $p$, and - every $P \in \syl_p(G)$ has [[Definition:Order of a Group|order]] $p^k$. ---- ==== Remarks ==== * $(n,p)$ denotes the greatest common divisor of $n$ and $p$. * $\syl_p(G)$ denotes the collection of [[Definition:Sylow p-Subgroup|Sylow $p$-subgroups]] of $G$. ---- ==== $\LaTeX$ version ==== %%%%%%%%%% % DEPENDENCIES % RequiredMacros: \DeclareMathOperator{\syl}{Syl} %%%%%%%%%% \begin{theorem}[Sylow's thereom] Let $G$ be a finite group and $p$ a prime. Write $|G| = np^k$ with $(n,p) = 1$. Then \begin{enumerate} \item $G$ acts transitively on $\syl_p(G)$ by conjugation with $|\syl_p(G)| \equiv 1$ modulo $p$, and \item every $P \in \syl_p(G)$ has order $p^k$. \end{enumerate} \end{theorem} ---- ==== External links ==== * [[wp>Sylow_theorems]]