====== Soccerballahedron ====== ==== Problem ==== Construct the [[definition:Cayley graph]] of the group defined by the [[definition:group presentation]] $$\left< a,b\mid a^2, b^5, ababab\right>.$$ Can you think of a common object whose shape is similar to this graph? ---- ==== Remarks ==== * One option ends up with a soccerball. * This is a presentation for the [[definition:alternating group]] $A_5$. * I decided to omit $=e$ from each relator. g = AlternatingGroup(5) d = g.cayley_graph(); d d.show(color_by_label=True, vertex_size=0.03, vertex_labels=False) show(g.semigroup_generators()) show(g.objgens()) #d.show3d(color_by_label=True, edge_size=0.01, edge_size2=0.02, vertex_size=0.03) #Uncomment the last line if you would like to allow java to draw the graph in 3D. # ---- ==== $\LaTeX$ version ==== %%%%% % DEPENDENCIES % RequiredPackages: \usepackage{tikz} % RequiredMacros: \DeclareMathOperator{\aut}{Aut} %%%%% \begin{problem} Type the problem code here. \end{problem} ---- ==== External links ==== * [[http://web.bentley.edu/empl/c/ncarter/vgt/gallery-4.html]] * [[http://www.lbl.gov/Science-Articles/Archive/MSD-C60-molecular-layer.html]] {{tag>problem ben needsreview rben}}