====== Symmetric Group ====== ====Definition==== Let $X$ be any set. The $\textdef{symmetric group}$ on $X$, denoted $\sym(X)$, is the set of all [[permutation]]s of $X$. We denote by $S_n$ the symmetric group on $X = \{1,2,\ldots, n\}$. ---- ==== Remarks ==== * None. ---- ==== $\LaTeX$ version ==== %%%%% % DEPENDENCIES % RequiredMacros: \newcommand{\textdef}[1]{\textit{#1}} \DeclareMathOperator{\sym}{Sym} %%%%% \begin{definition} Let $X$ be any set. The \textdef{symmetric group} on $X$, denoted $\sym(X)$, is the set of all permutations of $X$. We denote by $S_n$ the symmetric group on $X = \{1,2,\ldots, n\}$. \end{definition} ---- ==== External links ==== * [[wp>Symmetric group]] {{tag>definition needsreview rjosh rben ben}}