====== Kernel of a Group Homomorphism ====== ====Definition==== Let $f:G\to H$ be a [[definition:group homomorphism]]. The $\textdef{kernel}$ of $f$ is the collection of elements of $G$ that map to the indentity $e_H$ element of $H$. In set notation, we write $$\ker f = \{ g\in G\mid f(g)=e_H\}.$$ ---- ==== Remarks ==== * I plan to introduce the kernel of a homorphism at the same time as introducing as introducing [[definition:collapsible subgraph]]s. I plan to introduce this idea before introducing [[definition:normal subgroup]]s, and use the kernel to discover the definition of a normal subgroup. ---- ==== $\LaTeX$ version ==== %%%%% % DEPENDENCIES % RequiredMacros: \DeclareMathOperator{\syl}{Syl} %%%%% \begin{definition} Type the definition using LaTeX syntax. \end{definition} ---- ==== External links ==== * [[wp>Kernel_(algebra)#Group_homomorphisms]] {{tag>definition ben needsreview rben}}