User Tools

Site Tools


theorem:sylow_s_theorem

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
theorem:sylow_s_theorem [2013/08/08 09:04]
joshuawiscons
theorem:sylow_s_theorem [2013/08/13 11:29] (current)
joshuawiscons
Line 1: Line 1:
 ====== Sylow's theorem ====== ====== Sylow's theorem ======
 +$\DeclareMathOperator{\syl}{Syl}$
 **Theorem.** Let $G$ be a finite [[Definition:Group|group]] and $p$ a prime. Write $|G| = np^k$ with $(n,p) = 1$. Then **Theorem.** Let $G$ be a finite [[Definition:Group|group]] and $p$ a prime. Write $|G| = np^k$ with $(n,p) = 1$. Then
-  - $G$ acts [[Definition:Transitive Group Action|transitively]] on $\textrm{Syl}_p(G)$ by [[Definition:Conjugation|conjugation]] with $|\textrm{Syl}_p(G)| \equiv 1$ modulo $p$, and +  - $G$ acts [[Definition:Transitive Group Action|transitively]] on $\syl_p(G)$ by [[Definition:Conjugation|conjugation]] with $|\syl_p(G)| \equiv 1$ modulo $p$, and 
-  - every $P \in \textrm{Syl}_p(G)$ has [[Definition:Order of a Group|order]] $p^k$.+  - every $P \in \syl_p(G)$ has [[Definition:Order of a Group|order]] $p^k$.
  
 ---- ----
 ==== Remarks ====  ==== Remarks ==== 
   * $(n,p)$ denotes the greatest common divisor of $n$ and $p$.    * $(n,p)$ denotes the greatest common divisor of $n$ and $p$. 
-  * $\textrm{Syl}_p(G)$ denotes the collection of [[Definition:Sylow p-Subgroup|Sylow $p$-subgroups]] of $G$.+  * $\syl_p(G)$ denotes the collection of [[Definition:Sylow p-Subgroup|Sylow $p$-subgroups]] of $G$.
  
 ---- ----
-==== LaTeX version ====+==== $\LaTeXversion ====
 <code> <code>
 %%%%%%%%%% %%%%%%%%%%
 % DEPENDENCIES % DEPENDENCIES
---RequiredMacros: \DeclareMathOperator{\syl}{Syl} +% RequiredMacros: \DeclareMathOperator{\syl}{Syl} 
 %%%%%%%%%% %%%%%%%%%%
 \begin{theorem}[Sylow's thereom] \begin{theorem}[Sylow's thereom]
theorem/sylow_s_theorem.1375967062.txt.gz · Last modified: 2013/08/08 09:04 by joshuawiscons