User Tools

Site Tools


theorem:sylow_s_theorem

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
theorem:sylow_s_theorem [2013/08/08 06:14]
joshuawiscons created
theorem:sylow_s_theorem [2013/08/13 11:29] (current)
joshuawiscons
Line 1: Line 1:
-====== Sylow'Theorem ====== +====== Sylow'theorem ====== 
-===== Statement =====+$\DeclareMathOperator{\syl}{Syl}$ 
 +**Theorem.** Let $G$ be a finite [[Definition:Group|group]] and $p$ a prime. Write $|G| np^k$ with $(n,p) 1$. Then 
 +  - $G$ acts [[Definition:Transitive Group Action|transitively]] on $\syl_p(G)$ by [[Definition:Conjugation|conjugation]] with $|\syl_p(G)| \equiv 1$ modulo $p$, and 
 +  - every $P \in \syl_p(G)$ has [[Definition:Order of a Group|order]] $p^k$.
  
 +----
 +==== Remarks ==== 
 +  * $(n,p)$ denotes the greatest common divisor of $n$ and $p$. 
 +  * $\syl_p(G)$ denotes the collection of [[Definition:Sylow p-Subgroup|Sylow $p$-subgroups]] of $G$.
  
 +----
 +==== $\LaTeX$ version ====
 +<code>
 +%%%%%%%%%%
 +% DEPENDENCIES
 +% RequiredMacros: \DeclareMathOperator{\syl}{Syl} 
 +%%%%%%%%%%
 +\begin{theorem}[Sylow's thereom]
 +Let $G$ be a finite group and $p$ a prime. Write $|G| = np^k$ with $(n,p) = 1$. Then
 +\begin{enumerate}
 +\item $G$ acts transitively on $\syl_p(G)$ by conjugation with $|\syl_p(G)| \equiv 1$ modulo $p$, and
 +\item every $P \in \syl_p(G)$ has order $p^k$.
 +\end{enumerate}
 +\end{theorem}
 +</code>
 +
 +----
 +==== External links ====
 +  * [[wp>Sylow_theorems]]
theorem/sylow_s_theorem.1375956850.txt.gz · Last modified: 2013/08/08 06:14 by joshuawiscons