This shows you the differences between two versions of the page.
| Both sides previous revision Previous revision | |||
|
problem:when_do_two_simple_shifts_span_the_sameset [2013/11/25 13:46] bmwoodruff removed |
— (current) | ||
|---|---|---|---|
| Line 1: | Line 1: | ||
| - | ====== When Do Two Simple Shifts Span The Sameset ====== | ||
| - | ==== Problem ==== | ||
| - | Consider the sets $H_{12}$ and $H_{15}$ of simple shift permutations on alphabets with 12 and 15 letters respectively. | ||
| - | - For each $k\in\{0, | ||
| - | - For each $k\in\{0, | ||
| - | - In general, if we are considering simple shift permutations in $H_n$, then when does $\text{span}(\{\phi_j\})=\text{span}(\{\phi_k\})$? | ||
| - | |||
| - | ---- | ||
| - | ==== Remarks ==== | ||
| - | * Make remarks with a list. | ||
| - | |||
| - | ---- | ||
| - | ==== $\LaTeX$ version ==== | ||
| - | <file tex problem.when_do_two_simple_shifts_span_the_sameset.tex> | ||
| - | \begin{problem} | ||
| - | Consider the sets $H_{12}$ and $H_{15}$ of simple shift permutations on alphabets with 12 and 15 letters respectively. | ||
| - | \begin{enumerate} | ||
| - | \item For each $k\in\{0, | ||
| - | \item For each $k\in\{0, | ||
| - | \item In general, if we are considering simple shift permutations in $H_n$, then when does $\text{span}(\{\phi_j\})=\text{span}(\{\phi_k\})$? | ||
| - | \end{enumerate} | ||
| - | \end{problem} | ||
| - | </ | ||
| - | |||
| - | ---- | ||
| - | ==== External links ==== | ||
| - | * [[wp> | ||
| - | |||
| - | {{tag> | ||