This shows you the differences between two versions of the page.
| — |
problem:when_do_two_simple_shifts_span_the_same_set [2013/11/25 13:46] (current) bmwoodruff created |
||
|---|---|---|---|
| Line 1: | Line 1: | ||
| + | ====== When Do Two Simple Shifts Span The Sameset ====== | ||
| + | ==== Problem ==== | ||
| + | Consider the sets $H_{12}$ and $H_{15}$ of simple shift permutations on alphabets with 12 and 15 letters respectively. | ||
| + | - For each $k\in\{0, | ||
| + | - For each $k\in\{0, | ||
| + | - In general, if we are considering simple shift permutations in $H_n$, then when does $\text{span}(\{\phi_j\})=\text{span}(\{\phi_k\})$? | ||
| + | |||
| + | ---- | ||
| + | ==== Remarks ==== | ||
| + | * Make remarks with a list. | ||
| + | |||
| + | ---- | ||
| + | ==== $\LaTeX$ version ==== | ||
| + | <file tex problem.when_do_two_simple_shifts_span_the_sameset.tex> | ||
| + | \begin{problem} | ||
| + | Consider the sets $H_{12}$ and $H_{15}$ of simple shift permutations on alphabets with 12 and 15 letters respectively. | ||
| + | \begin{enumerate} | ||
| + | \item For each $k\in\{0, | ||
| + | \item For each $k\in\{0, | ||
| + | \item In general, if we are considering simple shift permutations in $H_n$, then when does $\text{span}(\{\phi_j\})=\text{span}(\{\phi_k\})$? | ||
| + | \end{enumerate} | ||
| + | \end{problem} | ||
| + | </ | ||
| + | |||
| + | ---- | ||
| + | ==== External links ==== | ||
| + | * [[wp> | ||
| + | |||
| + | {{tag> | ||