This shows you the differences between two versions of the page.
— |
problem:when_do_two_simple_shifts_span_the_same_set [2013/11/25 13:46] (current) bmwoodruff created |
||
---|---|---|---|
Line 1: | Line 1: | ||
+ | ====== When Do Two Simple Shifts Span The Sameset ====== | ||
+ | ==== Problem ==== | ||
+ | Consider the sets $H_{12}$ and $H_{15}$ of simple shift permutations on alphabets with 12 and 15 letters respectively. | ||
+ | - For each $k\in\{0, | ||
+ | - For each $k\in\{0, | ||
+ | - In general, if we are considering simple shift permutations in $H_n$, then when does $\text{span}(\{\phi_j\})=\text{span}(\{\phi_k\})$? | ||
+ | |||
+ | ---- | ||
+ | ==== Remarks ==== | ||
+ | * Make remarks with a list. | ||
+ | |||
+ | ---- | ||
+ | ==== $\LaTeX$ version ==== | ||
+ | <file tex problem.when_do_two_simple_shifts_span_the_sameset.tex> | ||
+ | \begin{problem} | ||
+ | Consider the sets $H_{12}$ and $H_{15}$ of simple shift permutations on alphabets with 12 and 15 letters respectively. | ||
+ | \begin{enumerate} | ||
+ | \item For each $k\in\{0, | ||
+ | \item For each $k\in\{0, | ||
+ | \item In general, if we are considering simple shift permutations in $H_n$, then when does $\text{span}(\{\phi_j\})=\text{span}(\{\phi_k\})$? | ||
+ | \end{enumerate} | ||
+ | \end{problem} | ||
+ | </ | ||
+ | |||
+ | ---- | ||
+ | ==== External links ==== | ||
+ | * [[wp> | ||
+ | |||
+ | {{tag> |