User Tools

Site Tools


problem:aut-square

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
problem:aut-square [2013/08/21 05:29]
joshuawiscons [$\LaTeX$ version]
problem:aut-square [2013/08/22 16:30] (current)
bmwoodruff
Line 13: Line 13:
 ---- ----
 ==== Remarks ====   ==== Remarks ====  
-  * $\aut(\mathcal{G})$ denotes the [[definition:automorphism group]] of $\mathcal{G}$.+  * $\aut(\mathcal{G})$ denotes the [[definition:automorphism of a graph|automorphism group]] of $\mathcal{G}$.
   * $S_4$ denotes the [[definition:symmetric group]] on $\{1,2,3,4\}$.   * $S_4$ denotes the [[definition:symmetric group]] on $\{1,2,3,4\}$.
  
Line 19: Line 19:
 ==== $\LaTeX$ version ==== ==== $\LaTeX$ version ====
 <file tex problem.aut-square.tex> <file tex problem.aut-square.tex>
 +%%%%%
 +% DEPENDENCIES
 +% RequiredPackages \usepackage{tikz}
 +% RequiredMacros: \DeclareMathOperator{\aut}{Aut}  
 +%%%%%
 \begin{problem} \begin{problem}
 Consider the graph $\mathcal{G} = (V,E)$ drawn below. The vertex set is $V$ and the (symmetric) relation giving adjacency is $E$. Specifically, $V = \{1,2,3,4\}$ and \[E = \{(1,2),(2,1),(2,3),(3,2),(3,4),(4,3),(1,4),(4,1)\}.\] Consider the graph $\mathcal{G} = (V,E)$ drawn below. The vertex set is $V$ and the (symmetric) relation giving adjacency is $E$. Specifically, $V = \{1,2,3,4\}$ and \[E = \{(1,2),(2,1),(2,3),(3,2),(3,4),(4,3),(1,4),(4,1)\}.\]
Line 40: Line 45:
   * [[wp>Dihedral group]]   * [[wp>Dihedral group]]
  
-{{tag>problem needsreview rjosh}}+{{tag>problem needsreview rjosh rben ben}}
problem/aut-square.1377077349.txt.gz · Last modified: 2013/08/21 05:29 by joshuawiscons