User Tools

Site Tools


problem:aut-square

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
problem:aut-square [2013/08/16 18:38]
bmwoodruff
problem:aut-square [2013/08/22 16:30] (current)
bmwoodruff
Line 1: Line 1:
 ====== Automorphism group of a square ====== ====== Automorphism group of a square ======
-**Problem.** Consider the graph $\mathcal{G} = (V,E)$ drawn below. The vertex set is $V$ and the (symmetric) relation giving adjacency is $E$. Specifically, $V = \{1,2,3,4\}$ and \[E = \{(1,2),(2,1),(2,3),(3,2),(3,4),(4,3),(1,4),(4,1)\}.\] + 
-Write down all elements of $\aut(\mathcal{G})$; view these as the elements of $S_4$ that preserve $E$. Also, determine if the following statements are true or false; explain your answers. +==== Problem ==== 
-  - There are some $a\in \aut(\mathcal{G})$ such that $a^2$ is the identity.<WRAP center round help 60%> Do you want them to be able to use the trivial automorphism as an answer? </WRAP> +Consider the graph $\mathcal{G} = (V,E)$ drawn below. The vertex set is $V$ and the (symmetric) relation giving adjacency is $E$. Specifically, $V = \{1,2,3,4\}$ and \[E = \{(1,2),(2,1),(2,3),(3,2),(3,4),(4,3),(1,4),(4,1)\}.\] 
-  - There are some $a\in \aut(\mathcal{G})$ such that $a^3$ is the identity. +Write down all elements of $\aut(\mathcal{G})$; view these as the elements of $S_4$ that preserve $E$. Also, determine if the following statements are true or false; explain your answers. For $a,b\in \aut(\mathcal{G})$, $ab$ denotes the (function) composition of $a$ with $b$, and $a^n$ denotes the composition of $a$ with itself $n$-times
-  - There are some $a\in \aut(\mathcal{G})$ such that every other $b\in  \aut(\mathcal{G})$ is of the form $b=a^n$ for some $n$. +  - There is an $a\in \aut(\mathcal{G})$ such that $a^2$ is the identity but $a$ is not the identity. 
 +  - There is an $a\in \aut(\mathcal{G})$ such that $a^3$ is the identity but $a$ is not the identity. 
 +  - There is an $a\in \aut(\mathcal{G})$ such that every other $b\in  \aut(\mathcal{G})$ is of the form $b=a^n$ for some $n$. 
   - For every $a,b\in \aut(\mathcal{G})$, we have $ab = ba$.    - For every $a,b\in \aut(\mathcal{G})$, we have $ab = ba$. 
  
Line 11: Line 13:
 ---- ----
 ==== Remarks ====   ==== Remarks ====  
-  * $\aut(\mathcal{G})$ denotes the [[definition:automorphism group]] of $\mathcal{G}$. The definition of an [[definition:automorphism group]] also explains the notation $a^n$ and $ab$.+  * $\aut(\mathcal{G})$ denotes the [[definition:automorphism of a graph|automorphism group]] of $\mathcal{G}$.
   * $S_4$ denotes the [[definition:symmetric group]] on $\{1,2,3,4\}$.   * $S_4$ denotes the [[definition:symmetric group]] on $\{1,2,3,4\}$.
  
 ---- ----
 ==== $\LaTeX$ version ==== ==== $\LaTeX$ version ====
-<file tex aut-square.tex> +<file tex problem.aut-square.tex> 
-%%%%%%%%%%+%%%%%
 % DEPENDENCIES % DEPENDENCIES
-% RequiredPackages\usepackage{tikz} +% RequiredPackages \usepackage{tikz} 
-% RequiredMacros: \DeclareMathOperator{\aut}{Aut}  +% RequiredMacros: \DeclareMathOperator{\aut}{Aut}   
-%%%%%%%%%%+%%%%%
 \begin{problem} \begin{problem}
 Consider the graph $\mathcal{G} = (V,E)$ drawn below. The vertex set is $V$ and the (symmetric) relation giving adjacency is $E$. Specifically, $V = \{1,2,3,4\}$ and \[E = \{(1,2),(2,1),(2,3),(3,2),(3,4),(4,3),(1,4),(4,1)\}.\] Consider the graph $\mathcal{G} = (V,E)$ drawn below. The vertex set is $V$ and the (symmetric) relation giving adjacency is $E$. Specifically, $V = \{1,2,3,4\}$ and \[E = \{(1,2),(2,1),(2,3),(3,2),(3,4),(4,3),(1,4),(4,1)\}.\]
-Write down all elements of $\aut(\mathcal{G})$; view these as the elements of $S_4$ that preserve $E$. Also, determine if the following statements are true or false; explain your answers.+Write down all elements of $\aut(\mathcal{G})$; view these as the elements of $S_4$ that preserve $E$. Also, determine if the following statements are true or false; explain your answers. For $a,b\in \aut(\mathcal{G})$, $ab$ denotes the (function) composition of $a$ with $b$, and $a^n$ denotes the composition of $a$ with itself $n$-times.
 \begin{enumerate} \begin{enumerate}
-\item There are some $a\in \aut(\mathcal{G})$ such that $a^2$ is the identity. +\item There is an $a\in \aut(\mathcal{G})$ such that $a^2$ is the identity but $a$ is not the identity. 
-\item There are some $a\in \aut(\mathcal{G})$ such that $a^3$ is the identity. +\item There is an $a\in \aut(\mathcal{G})$ such that $a^3$ is the identity but $a$ is not the identity. 
-\item There are some $a\in \aut(\mathcal{G})$ such that every other $b\in  \aut(\mathcal{G})$ is of the form $b=a^n$ for some $n$. +\item There is an $a\in \aut(\mathcal{G})$ such that every other $b\in  \aut(\mathcal{G})$ is of the form $b=a^n$ for some $n$. 
 \item For every $a,b\in \aut(\mathcal{G})$, $ab = ba$.  \item For every $a,b\in \aut(\mathcal{G})$, $ab = ba$. 
 \end{enumerate} \end{enumerate}
Line 43: Line 45:
   * [[wp>Dihedral group]]   * [[wp>Dihedral group]]
  
-{{tag>problem needsreview rjosh rben}}+{{tag>problem needsreview rjosh rben ben}}
problem/aut-square.1376692687.txt.gz · Last modified: 2013/08/16 18:38 by bmwoodruff