User Tools

Site Tools


definition:symmetric_group

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
definition:symmetric_group [2013/08/22 15:49]
bmwoodruff
definition:symmetric_group [2013/08/22 16:47] (current)
bmwoodruff
Line 1: Line 1:
 ====== Symmetric Group ====== ====== Symmetric Group ======
 ====Definition====  ====Definition==== 
-Let $X$ be any set. The $\textdef{symmetric group}$ on $X$, denoted $\sym(X)$, is the set of all [[permutation]]s of $X$; that is, $\sym(X)$ is the set of all [[wp>bijection|bijections]] from $X$ to $X$. We denote by $S_n$ the symmetric group on $X = \{1,2,\ldots, n\}$.+Let $X$ be any set. The $\textdef{symmetric group}$ on $X$, denoted $\sym(X)$, is the set of all [[permutation]]s of $X$. We denote by $S_n$ the symmetric group on $X = \{1,2,\ldots, n\}$.
  
  
Line 17: Line 17:
 %%%%% %%%%%
 \begin{definition} \begin{definition}
-Let $X$ be any set. The \textdef{symmetric group} on $X$, denoted $\sym(X)$, is the set of all permutations of $X$; that is, $\sym(X)$ is the set of all bijections from $X$ to $X$. We denote by $S_n$ the symmetric group on $X = \{1,2,\ldots, n\}$.+Let $X$ be any set. The \textdef{symmetric group} on $X$, denoted $\sym(X)$, is the set of all permutations of $X$. We denote by $S_n$ the symmetric group on $X = \{1,2,\ldots, n\}$.
 \end{definition} \end{definition}
 </file> </file>
definition/symmetric_group.1377200954.txt.gz · Last modified: 2013/08/22 15:49 by bmwoodruff