This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision | ||
definition:permutation_group [2013/08/19 11:25] joshuawiscons |
definition:permutation_group [2013/08/30 11:47] (current) joshuawiscons [External links] |
||
---|---|---|---|
Line 1: | Line 1: | ||
====== Permutation Group ====== | ====== Permutation Group ====== | ||
====Definition==== | ====Definition==== | ||
- | Let $X$ be any set. A $\textdef{permutation group}$ on $X$ is any [[definition: | + | A $\textdef{permutation group}$ on $X$ is a set of [[definition: |
---- | ---- | ||
==== Remarks ==== | ==== Remarks ==== | ||
- | * $\sym{X}$ denotes the [[definition: | + | * Alternately, |
Line 14: | Line 13: | ||
%%%%% | %%%%% | ||
% DEPENDENCIES | % DEPENDENCIES | ||
- | % RequiredMacros: | + | % RequiredMacros: |
%%%%% | %%%%% | ||
\begin{definition} | \begin{definition} | ||
- | Let $X$ be any set. A \textdef{permutation group} on $X$ is any subgroup of $\sym{X}$; that is, it is a subset | + | A \textdef{permutation group} on $X$ is a set of permutations |
\end{definition} | \end{definition} | ||
</ | </ | ||
Line 26: | Line 25: | ||
- | {{tag> | + | {{tag> |