definition:kernel_of_a_group_homomorphism

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
definition:kernel_of_a_group_homomorphism [2013/08/14 11:31]
bmwoodruff definition:kernel_of_a_homomorphism renamed to kernel_of_a_group_homomorphism
definition:kernel_of_a_group_homomorphism [2013/08/21 10:05] (current)
joshuawiscons
Line 1: Line 1:
 ====== Kernel of a Group Homomorphism ====== ====== Kernel of a Group Homomorphism ======
 ====Definition====  ====Definition==== 
-Let $f:G\to H$ be a [[definition:group homomorphism]]. The kernel of $f$ is the collection of elements of $G$ that map to the indentity $e_H$ element of $H$. In set notation, we write $$\ker f = \{ g\in G\mid f(g)=e_H\}.$$+Let $f:G\to H$ be a [[definition:group homomorphism]]. The $\textdef{kernel}$ of $f$ is the collection of elements of $G$ that map to the indentity $e_H$ element of $H$. In set notation, we write $$\ker f = \{ g\in G\mid f(g)=e_H\}.$$
  
  
Line 23: Line 23:
 ---- ----
 ==== External links ==== ==== External links ====
-  * http://en.wikipedia.org/wiki/Kernel_(algebra)#Group_homomorphisms+  * [[wp>Kernel_(algebra)#Group_homomorphisms]]
  
  
-{{tag>definition ben needsreview}}+{{tag>definition ben needsreview rben}}
definition/kernel_of_a_group_homomorphism.1376494279.txt.gz · Last modified: 2013/08/14 11:31 by bmwoodruff