User Tools

Site Tools


definition:group_isomorphism

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
definition:group_isomorphism [2013/08/14 11:15]
bmwoodruff created
definition:group_isomorphism [2013/08/21 10:00] (current)
joshuawiscons
Line 1: Line 1:
 ====== Group Isomorphism ====== ====== Group Isomorphism ======
 ====Definition====  ====Definition==== 
-Let $f:G\to H$ be a [[definition:group homomorphism|homomorphism]]. If $f$ is also a bijection, then we say that $f$ is a (group) isomorphism. If there exists an isomorphism between $G$ and $H$, then we say that $G$ and $H$ are isomorphic.+Let $f:G\to H$ be a [[definition:group homomorphism|homomorphism]] of [[definition:group|groups]]. If $f$ is also a [[wp>bijection]], then we say that $f$ is a (group) $\textdef{isomorphism}$. If there exists an isomorphism between $G$ and $H$, then we say that $G$ and $H$ are $\textdef{isomorphic}$, denoted $G\cong H$.
  
  
Line 23: Line 23:
 ---- ----
 ==== External links ==== ==== External links ====
-  * http://en.wikipedia.org/wiki/Group_isomorphism+  * [[wp>Group isomorphism]]
  
  
-{{tag>definition ben needsreview}}+{{tag>definition ben needsreview rben rjosh}}
definition/group_isomorphism.1376493324.txt.gz · Last modified: 2013/08/14 11:15 by bmwoodruff