User Tools

Site Tools


definition:group_homomorphism

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
definition:group_homomorphism [2013/08/21 09:55]
joshuawiscons [External links]
definition:group_homomorphism [2013/08/21 10:01] (current)
joshuawiscons
Line 1: Line 1:
 ====== Group Homomorphism ====== ====== Group Homomorphism ======
 ====Definition====  ====Definition==== 
-Let $(G,\cdot)$ and $(H,\times)$ be groups. We say that the function $f:G\to H$ is a group homomorphism if $f(a\cdot b)=f(a)\times f(b)$ for every $a,b\in G$.+Let $(G,\cdot)$ and $(H,\times)$ be [[definition:group|groups]]. We say that the function $f:G\to H$ is a group $\textdef{homomorphism}$ if $f(a\cdot b)=f(a)\times f(b)$ for every $a,b\in G$.
  
  
definition/group_homomorphism.1377093329.txt.gz · Last modified: 2013/08/21 09:55 by joshuawiscons