definition:group_homomorphism

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
definition:group_homomorphism [2013/08/14 11:06]
bmwoodruff created
definition:group_homomorphism [2013/08/21 10:01] (current)
joshuawiscons
Line 1: Line 1:
 ====== Group Homomorphism ====== ====== Group Homomorphism ======
 ====Definition====  ====Definition==== 
-Let $(G,\cdot)$ and $(H,\times)$ be groups. We say that the function $f:G\to H$ is a group homomorphism if $f(a\cdot b)=f(a)\times f(b)$ for every $a,b\in G$.+Let $(G,\cdot)$ and $(H,\times)$ be [[definition:group|groups]]. We say that the function $f:G\to H$ is a group $\textdef{homomorphism}$ if $f(a\cdot b)=f(a)\times f(b)$ for every $a,b\in G$.
  
  
 ---- ----
 ==== Remarks ====  ==== Remarks ==== 
-  * The map is compatible with the group structures of both $G$ and $H$. +  * I would like to add something along the lines of "The map is compatible with the group structures of both $G$ and $H$" to the definition above.  If someone has a good way of stating this, feel free to add it above.
  
  
Line 23: Line 23:
 ---- ----
 ==== External links ==== ==== External links ====
-  * http://en.wikipedia.org/wiki/Group_homomorphism+  * [[wp>Group homomorphism]]
  
  
-{{tag>definition}}+{{tag>definition ben needsreview rben rjosh}}
definition/group_homomorphism.1376492815.txt.gz · Last modified: 2013/08/14 11:06 by bmwoodruff