User Tools

Site Tools


definition:group

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
definition:group [2013/08/15 11:11]
joshuawiscons created
definition:group [2013/08/21 13:01] (current)
bmwoodruff [External links]
Line 2: Line 2:
  
 ====Definition====  ====Definition==== 
-Let $G$ be a [[wp>Set (mathematics)|Set]] together with a function $m:G\times G \rightarrow G$a function $i:G \rightarrow G$, and distinguished element $e\in G$. The structure $\mathbb{G} = (G,m,i,e)$ is called a $\textdef{group}$ if the following hold for all $x,y,z \in G$; we write $xy$ in place of $m(x,y)$ and $x^{-1}$ in place of $i(x)$+Let $G$ be a setand let $*be binary operation on $G$. The structure $\mathbb{G} = (G,*)$ is called a $\textdef{group}$ if the following hold
-  - $(xy)z = x(yz)+  - $\textbf{[Associativity]}$ For all $x,y,z\in G$ one has $(xy)* z = x* (y* z)$
-  - $xx^{-1x^{-1}x = e$ +  - $\textbf{[Identity]}$ There is a unique $e\in G$ such that for all $x\in Gone has $x * e = e* x = x$ 
-  - $xe = ex = x$ +  - $\textbf{[Inverses]}$ For all $x\in Gthere is a unique $y\in G$ such that $x* y y* = e$. 
-We usually simply write $G$ when referring to the entire structure $\mathbb{G}$.+We usually simply write $G$ when referring to the entire structure $\mathbb{G}$. The element $e$ from the second point is called the $\textdef{identity}$. The element $y$ from the third point is called the $\textdef{inverse}$ of $x$ and is usually denoted $x^{-1}$. One often simply writes $xy$ in place of $x* y$, and for every positive integer $n$, $x^n$ is short for $x* x* \cdots * x$ ($n$ times).
  
 ---- ----
 ==== Remarks ====  ==== Remarks ==== 
-  * We usually think of $mas defining multiplication on $G$, though often this is better interpreted as addition+  * A [[wp>binary operation]] on $Gis simply function from $G\times G$ to $G$ (and its domain is **all** of $G\times G$). As is customary, we write $x*y$ in place of $*(x,y)$.  
-  * We usually think of $i$ as defining inversion on $G$, though often this is better interpreted as negation+  * We usually think of $*$ as defining a multiplication on $G$, though often this is better interpreted as addition. In the later case, we may use the symbol $+$ instead of $*$
-  * When thinking of $m$ as multiplication we often use the symbol $1$ instead of $e$. Similarly, When thinking of $m$ as addition we may use the symbol $0$ instead of $e$.+  * When thinking of $*$ as multiplication we often use the symbol $1$ instead of $e$. Similarly, when thinking of $*$ as addition we may use the symbol $0$ instead of $e$.
  
  
 ---- ----
 ==== $\LaTeX$ version ==== ==== $\LaTeX$ version ====
-<code>+<file tex definition.group.tex>
 %%%%% %%%%%
 % DEPENDENCIES  % DEPENDENCIES 
Line 23: Line 23:
 %%%%% %%%%%
 \begin{definition} \begin{definition}
-Let $G$ be a set together with a function $m:G\times G \rightarrow G$a function $i:G \rightarrow G$, and distinguished element $e\in G$. The structure $\mathbb{G} = (G,m,i,e)$ is called a \textdef{group} if the following hold for all $x,y,z \in G$; we write $xy$ in place of $m(x,y)$ and $x^{-1}$ in place of $i(x)$.+Let $G$ be a set, and let $*be binary operation on $G$. The structure $\mathbb{G} = (G,*)$ is called a \textdef{group} if the following hold.
 \begin{enumerate} \begin{enumerate}
-\item $(xy)z = x(yz)$ +\item \textbf{[Associativity]} For all $x,y,z\in G$ one has $(x* y)z = x(y* z)$. 
-\item $xx^{-1x^{-1}x = e$ +\item \textbf{[Identity]There is a unique $e\in G$ such that for all $x\in G$ one has $* e = e* x = x$ 
-\item $xe = ex = x$+\item \textbf{[Inverses]} For all $x\in G$ there is a unique $y\in G$ such that $x* y y* = e$.
 \end{enumerate} \end{enumerate}
-We usually simply write $G$ when referring to the entire structure $\mathbb{G}$.+We usually simply write $G$ when referring to the entire structure $\mathbb{G}$. The element $e$ from the second point is called the \textdef{identity}. The element $y$ from the third point is called the \textdef{inverse} of $x$ and is usually denoted $x^{-1}$. One often simply writes $xy$ in place of $x* y$, and for every positive integer $n$, $x^n$ is short for $x* x* \cdots * x$ ($n$ times).
 \end{definition} \end{definition}
-</code>+</file>
  
 ---- ----
Line 38: Line 38:
  
  
-{{tag>definition}}+{{tag>definition needsreview rjosh rben}}
definition/group.1376579475.txt.gz · Last modified: 2013/08/15 11:11 by joshuawiscons