User Tools

Site Tools


definition:composition_combination_of_permutations

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
definition:composition_combination_of_permutations [2013/11/21 11:10]
tarafife created
definition:composition_combination_of_permutations [2013/11/21 11:14] (current)
tarafife [$\LaTeX$ version]
Line 2: Line 2:
 ====Definition====  ====Definition==== 
 Let $X$ be a set, and $S$ be a set of permutations of $X$.   Let $X$ be a set, and $S$ be a set of permutations of $X$.  
-*If $\sigma$ is a permutation of $X$, we'll use exponential notation to express repeated composition of $\sigma$. This gives us $\sigma^2=\sigma\circ \sigma$ and $\sigma^5=\sigma\circ\sigma\circ\sigma\circ\sigma\circ\sigma$, etc.  +  *If $\sigma$ is a permutation of $X$, we'll use exponential notation to express repeated composition of $\sigma$. This gives us $\sigma^2=\sigma\circ \sigma$ and $\sigma^5=\sigma\circ\sigma\circ\sigma\circ\sigma\circ\sigma$, etc.  
-*We'll use negative exponents when we want to repeated apply an inverse, which gives us $\sigma^{-n}=\left(\sigma^{-1}\right)^n$. +  *We'll use negative exponents when we want to repeated apply an inverse, which gives us $\sigma^{-n}=\left(\sigma^{-1}\right)^n$. 
-* A composition combination of permutations in $S$ is a composition of the form $$\sigma_1^{n_1}\circ\sigma_2^{n_2}\circ\cdots\circ \sigma_k^{n_k},$$ where $k\in\mathbb{N}$, each $\sigma_i\in S$, and each $n_i\in \mathbb{Z}$ for $i\in \{1,2,3,\ldots,k\}$. +  * A composition combination of permutations in $S$ is a composition of the form $$\sigma_1^{n_1}\circ\sigma_2^{n_2}\circ\cdots\circ \sigma_k^{n_k},$$ where $k\in\mathbb{N}$, each $\sigma_i\in S$, and each $n_i\in \mathbb{Z}$ for $i\in \{1,2,3,\ldots,k\}$. 
-* The span of $S$, written $\text{span}(S)$ is the set of all composition combinations of permutations in $S$. We'll say that the set $S$ generates $\text{span}(S)$.+  * The span of $S$, written $\text{span}(S)$ is the set of all composition combinations of permutations in $S$. We'll say that the set $S$ generates $\text{span}(S)$.
 As an example, if $S=\{a,b,c,d\}$ is a set of permutations of $X$, then the composition $a^2\circ b^{-1}\circ c^3$ is a composition combination of permutations in $S$, and so are $d^{-3}$, $b^5\circ a^{-2}$, and more.  As an example, if $S=\{a,b,c,d\}$ is a set of permutations of $X$, then the composition $a^2\circ b^{-1}\circ c^3$ is a composition combination of permutations in $S$, and so are $d^{-3}$, $b^5\circ a^{-2}$, and more. 
  
Line 24: Line 24:
 Let $X$ be a set, and $S$ be a set of permutations of $X$.   Let $X$ be a set, and $S$ be a set of permutations of $X$.  
 *If $\sigma$ is a permutation of $X$, we'll use exponential notation to express repeated composition of $\sigma$. This gives us $\sigma^2=\sigma\circ \sigma$ and $\sigma^5=\sigma\circ\sigma\circ\sigma\circ\sigma\circ\sigma$, etc.  *If $\sigma$ is a permutation of $X$, we'll use exponential notation to express repeated composition of $\sigma$. This gives us $\sigma^2=\sigma\circ \sigma$ and $\sigma^5=\sigma\circ\sigma\circ\sigma\circ\sigma\circ\sigma$, etc. 
-*We'll use negative exponents when we want to repeated apply an inverse, which gives us $\sigma^{-n}=\left(\sigma^{-1}\right)^n$. +\begin{itemize} 
-A composition combination of permutations in $S$ is a composition of the form $$\sigma_1^{n_1}\circ\sigma_2^{n_2}\circ\cdots\circ \sigma_k^{n_k},$$ where $k\in\mathbb{N}$, each $\sigma_i\in S$, and each $n_i\in \mathbb{Z}$ for $i\in \{1,2,3,\ldots,k\}$. +\item We'll use negative exponents when we want to repeated apply an inverse, which gives us $\sigma^{-n}=\left(\sigma^{-1}\right)^n$. 
-The span of $S$, written $\text{span}(S)$ is the set of all composition combinations of permutations in $S$. We'll say that the set $S$ generates $\text{span}(S)$.+\item A composition combination of permutations in $S$ is a composition of the form $$\sigma_1^{n_1}\circ\sigma_2^{n_2}\circ\cdots\circ \sigma_k^{n_k},$$ where $k\in\mathbb{N}$, each $\sigma_i\in S$, and each $n_i\in \mathbb{Z}$ for $i\in \{1,2,3,\ldots,k\}$. 
 +\item The span of $S$, written $\text{span}(S)$ is the set of all composition combinations of permutations in $S$. We'll say that the set $S$ generates $\text{span}(S)$.
 As an example, if $S=\{a,b,c,d\}$ is a set of permutations of $X$, then the composition $a^2\circ b^{-1}\circ c^3$ is a composition combination of permutations in $S$, and so are $d^{-3}$, $b^5\circ a^{-2}$, and more.  As an example, if $S=\{a,b,c,d\}$ is a set of permutations of $X$, then the composition $a^2\circ b^{-1}\circ c^3$ is a composition combination of permutations in $S$, and so are $d^{-3}$, $b^5\circ a^{-2}$, and more. 
 +\end{itemize}
 \end{definition} \end{definition}
 </file> </file>
Line 36: Line 38:
  
  
-{{tag>definition}}+{{tag>definition ben}}
definition/composition_combination_of_permutations.1385050251.txt.gz · Last modified: 2013/11/21 11:10 by tarafife